KNOWLEDGE INFUSION:

FOCUS ON RISK-BASED DECISION-MAKING

Permission to Use: Please note that the presenter has agreed to make their presentation available. However, should you want to use some of the data or slides for your own presentations, we request that you contact the presenter for permission to use.

Risk-Based Decision-Making Analysis of Babesia Microti Risk to the Canadian Blood Supply Canadian Blood Services It's in you to give Published March 2017

Prepared by Canadian Blood Services Knowledge Mobilization Team with special thanks to Margaret Fearon

KnowledgeInfusion

CENTRE FOR INNOVATION PRESENTS

Presentation Objective:

✓ Learn how Canadian Blood Services uses the Risk-Based Decision-Making Framework, developed by the Alliance of Blood Operators, to make informed decisions on strategies to deal with emerging and current risks to the blood supply.

Risk-Based Decision-Making Analysis of Babesia Microti Risk to the Canadian Blood Supply

Knowledge Infusion: Focus on Risk-Based Decision-Making Case Studies Dr. Margaret Fearon February 27, 2017

The ABO Risk-Based Decision Making Framework for Blood Safety

https://riskframework.allianceofbloodoperators.org/log-in/

Policy foundations

Risk management principles

Risk communication and stakeholder participation

Assessment principles

Risk tolerability

An emerging risk

Babesia microti (B. microti)

- An infection caused by a parasite transmitted by ticks.
- Endemic in parts of the United States with 96% of reported cases in Northeast and Midwest States.
- For some people (immunosuppressed, the elderly, and asplenics, symptoms can lead to severe complications that include death.

It can be transmitted by blood transfusion and is increasingly recognized as posing a risk to the US blood supply.

Blacklegged Tick (Ixodes scapularis)

Babesia microti – reported Cases of Transfusion Transmission

UNITED STATES

160 transfusion transmissions¹12 deaths

¹Herwaldt BL, Linden JV, Bosserman E, et al. Transfusion-associated babesiosis in the United States: A description of cases. Ann Intern Med 2011;155:509-19.

CANADA

1 transfusion transmission (1998)² 0 deaths

²Kain KC, Jassoum SB, Fong IW, Hannach B. Transfusiontransmitted Babesiosis in Ontario: First reported case in Canada. CMAJ 2001;164:1721-3

Evidence suggests B. microti is emerging as an endemic infection in Canada

- It is well established in the U.S. states bordering Canada.
- It has been identified (0.02 1.7% of ticks tested) in tick populations in Manitoba, Ontario, Quebec and New Brunswick, by passive and active surveillance.
- Incidence of Lyme disease, a reasonable surrogate for B. microti, appears to be slowly increasing.
- First confirmed human case of endemically acquired B. microti reported in Manitoba in 2013.

Results of Active Tick Surveillance 2008-2012

Ogden N. et al Environmental Risk from Lyme Disease in central and eastern Canada: a summary of recent surveillance information. CCDR 2014;40:58-67

Agence de la santé publique du Canada aha

.

Canada Communicable Disease Report

Date of Publication: 15 January 2000	Vol. 26-02	Date de publication : 15 janvier 2000
Contained in this issue:	Contenu du présent r	numéro :
Transfusion Transmitted Babenkosis in Ontario: First Reported Case in Canada World Sarvey of Rabies, 1997	Babésisse post-transfuriemette en Ontario permier cas signaté au Canada 9 Enquitte montifaile sur la rage, 1997. 13	

TRANSFUSION-TRANSMITTED BABESIOSIS IN ONTARIO: FIRST REPORTED CASE IN CANADA

Relevé des maladies transmissibles au Canada

BABÉSIOSE POST-TRANSFUSIONNELLE EN ON PREMIER CAS SIGNALÉ AU CANADA

CASE REPORT

The first case of locally acquired tick-borne Babesia microti infection in Canada

ID FRCPC^{1,2,5}, Arshad N Ahsanuddin MD⁴, Anamarija M Perry MD⁴, L Robbin Lind od Iranpour PhD⁵, Antonia Dibernardo BSe⁵, Paul G Van Caeseele MD FRCPC^{1,2,8}

sanuddin, AM Perry, et al. The first case ick-borne Babesia microti infection in Dis Med Microbiol 2014;25(6):e87-e89. Le premier cas d'infection à Babesia microti

CASE PRESENTATI

nual slide with his

lth; ²Department of Medical Microbiology; ²Department of Paediatrics and Child Health mitoba; ³Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, W : Dr Jared Bullard, 750 William Avenue, Winnipeg, Manitoba R3C 3Y1. Telephone 204-945-1306, fax 204-786-4770, bullardФров mb.ca

This open-scores seriele is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BV-NC) (http:// creativecommon.org/license/by-nc/40), which permits resus, distribution and reproduction of the article, provided due the original work is repeaty circle add he musis is restricted to necessamental across. For commercial trans.

Can J Infect Dis Med Microbiol Vol 25 No 6 Novembe mber 2014

transmis par une tique à être contracté au Canada

ers that and subs ing the

Positive ticks and rodents with proportion of CBS donations by census divisions in Manitoba*

*Map courtesy of Robbin Lindsay, National Microbiology Laboratory, Public Health Agency of Canada

What level of risk does Babesia microti pose to the blood supply in Canada?

- 2013 study conducted by Canadian Blood Services and Héma Quebec revealed:
 - Seroprevalence testing of 13,993 blood donors in affected regions indicated no positive donors

Conclusion: Current risk to blood supply is very low.

Assessment team

Dr. Margaret Fearon, Director, Medical Microbiology

Dr. Sheila O'Brien, Associate Director, Epidemiology & Surveillance

Judie Leach Bennett, Director, Centre for Innovation

Sheila Ward, Partner, Industry Knowledge Integration

Stephanie Kelly, Senior Manager, Stakeholder Relations

Assessment question

What are the **current** and **future** risks of babesia microti to Canadian blood donors and transfusion recipients and what are the **options** to address the risks to the Canadian blood supply?

What are **reasonable** short and long term **risk reduction strategies**, including surveillance and triggers for future action?

15

Scenario 1 - Current state: The risk of babesia is low. The risk is being managed through public health and tick surveillance coupled with periodic blood donor seroprevalence studies.

Risk scenarios

Scenario 2 - Potential future state: The risk of babesiosis to the blood supply escalates and requires a more substantial mitigation response, over and above the ongoing prevalence surveillance.

Risk Management Options

Scenario 1	Low risk: manage through public health and tick surveillance coupled with periodic blood donor seroprevalence studies
Option A	When risk is low, maintain surveillance (i.e. monitor public health surveillance for disease such as Lyme disease, ticks and human cases, in Canada and U.S.) and undertake enhanced surveillance in the form of a blood donor seroprevalence study every 3-5 years. Timing of the study will be guided by data emerging from ongoing surveillance such as increased babesiosis in U.S. states or human cases in Canada.

8

Risk Management Options

Scenario 2	Risk escalates: requires a more substantial mitigation response, over and above the ongoing prevalence surveillance.
Option B	If risk increases based on information from Options A, stop collecting blood from the risk area.
Option C	If risk increases based on information from A, undertake selective testing for babesiosis of a) donors living in high risk areas and b) travellers to US or Canadian risk areas.
Option D	Maintain a small inventory of babesia tested units for selected patients, e.g. neonates.
Option E	Implement universal testing for babesiosis.
Option F	Implement pathogen reduction technology.

Participation Strategy

Feedback from stakeholder consultation with National Liaison Committee, March 2016:

- Vector-borne threats becoming more common
- Good test run for this and future disease threats
- Response must be appropriate to threat level posed
- Regular communication with stakeholders will reduce fear around emerging threats
- Requires consistent funding and routine collection of surveillance data; support for investment for a proactive response
- Obtain donor consent for future tests to enable research and quick response

What the analysis revealed - Scenario 1:

- Risk to blood supply from babesia is very low; zero antibody positives amongst ~14,000 donors.
- Monitoring for increase in babesia should continue, including blood donor seroprevalence monitoring.
- Donor travel to endemic areas of the U.S. is currently the key risk factor for Canadian blood supply.
- Trigger to reassess risk level will be observed increase in level of babesia in general or donor population.

What the analysis revealed - Scenario 2:

- Reasonable to assume experience in U.S. will be similar in Canada (transfusion transmissions, fatalities).
- There is no licensed universal test for babesia in Canada or the U.S.
- There is no pathogen reduction technology available to treat all fresh blood components.
- Donor travel questions, to prompt deferral, have not been very effective due to complexity/depth of questioning required.

Mitigation option for Scenario 1

When the risk of B. microti is low, the risk mitigation provided by a Option A is considered tolerable:

- ongoing passive and active tick monitoring,
- blood donor seroprevalence studies every 3-5 years
- revisit the 3-5 year study timetable depending on developments with the tick data.

Mitigation option for Scenario 2

The risk mitigation provided by Option C is the proposed option:

Introduce selective testing of donors living in high risk areas and travelers to the U.S. or Canadian risk areas.

- A reliable investigational test is available.
- Focus on regional risk balances effective mitigation against cost.
- More manageable operationally than ceasing collections in certain areas.
- Distributes a small risk across all inventory (i.e. that an infected donor may donate outside a high risk area).

6

Decision

- EMT endorsed the recommendation of the assessment team
- They directed that a donor seroprevalence study should be conducted no later than 2918 to
 - Reassess the level of risk
 - Serve as a basis for developing a trigger to escalate migration efforts in accordance with Scenario 2
- EMT requested some knowledge mobilization about the application of the RBDM framework at CBS. Please follow the link below for more information on this case study. https://blood.ca/en/blog/2016-12/making-decisions-right-way-global-endeavour-part-1

SPOTLIGHT ON INTERNATIONAL

