

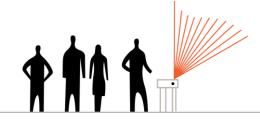
13th Annual Canadian Blood Services International Symposium

Blood-Borne Pathogens: Defend, Detect, and Destroy

PERMISSON TO USE: Please note that, by making their presentations available on-line, primary authors have agreed to share their presentations. However, should you want to use some of the data or slides for your own presentations, we request that you contact the primary author for permission.

The Biological Impact of Pathogen Inactivation on Blood Product Quality

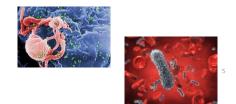
CBS Annual International Symposium – September 16, 2015 Dr. Peter Schubert, Research Associate, Centre for Innovation, CBS Clinical Associate Professor, Pathology, UBC

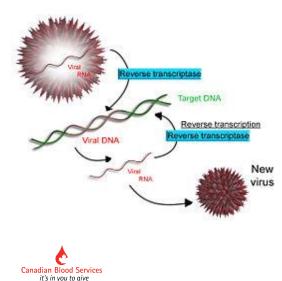

Conflict of Interest Disclosures Peter Schubert

Financial support from TerumoBCT and MacoPharma.

OVERVIEW

- Compare the currently available pathogen inactivation technologies and their mechanisms of action
- Discuss the impact of pathogen inactivation technology on product quality




QUALITY and SAFETY

- Shelf life restriction of platelet concentrates
 - Quality reduction during storage
 - Risk of pathogen contamination
- · Blood safety has historically been achieved by mitigating known risks
 - Donor screening
 - Testing of every donation for specific pathogens
- · Risk still is present
 - Detection limit (concentration)
 - Unknown or unexpected pathogens

To be infectious, agents must be able to reproduce

- Pathogens with nucleic acids reproduce by replicating their nucleic acid 'roadmap'.
- This is a mandatory step for all pathogenic agents except prions.

Pathogen inactivation systems for platelet concentrates

System	Manufacturer	UV (nM)	Photo- sensitizer	Solution	Mechanism of action
Intercept	Cerus	320-400	Psoralens	Intersol/ SPP+	Irreversible cross linking of nucleic acids.
Mirasol	TerumoBCT	280-360	Riboflavin	Plasma/ SSP+	 Irreversible photo oxidative damage to nucleic acids. Photolysis of the complex induces guanine oxidation, single strand breaks and the formation of covalent bonds.
Theraflex	MacoPharma	254	none	SSP+	Nucleic acid presumably occurs due to cyclobutyl ring formation.

Implementation of PI systems world-wide

<u>Clinical trials with PRTs</u>

Study	Technology	Design	N (Test/Ref) Mean Storage	Primary endpoint	Secondary endpoint
EUROSPRITE	Intercept BC/PC	56d or 8Tx	52/51 3.4d / 3.5d	CCI & CI at 1h	CCI & CI at 24h, Bleeding score
SPRINT	Intercept AP/PC	28d or 8Tx 12.5% non-inf.	318/327 3.4d / 3.6d	Grade 2 bleeding	Grade 3&4 bleeding, CCI & CI 1&24h
MIRACLE	Mirasol AP/PC	RCT 20% non-inf.	58/64 2.8d / 2.6d	CCI 1h	CCI 24h
PREPARES (CBS, Sanquin, & Norway)	Mirasol BC/PC	42d or 8Tx <15% non-inf.	618	Grade ≥2	CCI & CI 1&24h

Observation: ~25% of platelet are damaged

- \rightarrow What are the features for the damage?
- \rightarrow Why does this happen? Mechanisms....

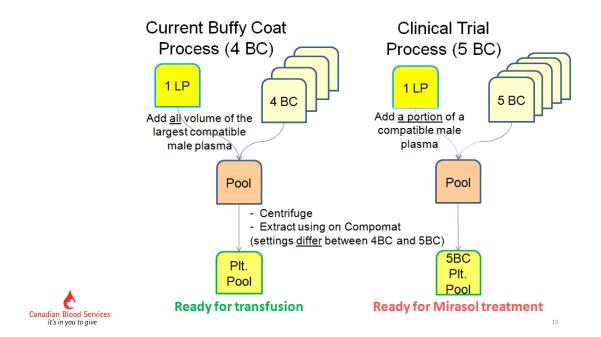
 \rightarrow How can we fix it?

<u>Pathogen Reduction Evaluation & Predictive</u> <u>Analytical Rating Score (PREPAReS)</u>

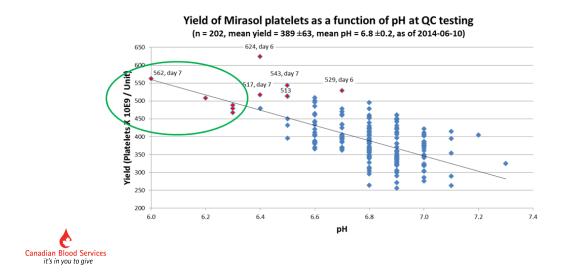
- A prospective, randomized, single-blinded, multicenter non-inferiority trial for the side by side evaluation of Mirasol-treated and standard of care Pooled Platelet products in hemato-oncological patients.
- Initiated in the Netherlands in November 2010.
- Sponsored by the Sanquin Blood Supply Foundation, the national blood operator in the Netherlands and financially supported by Terumo BCT.
- Canadian Blood Services' role in this study is to produce, at its Ottawa manufacturing site only, the Mirasol-treated pooled platelets strictly for use in PREPAReS by the participating hospitals.

Canadian Arm of PREPAReS

- Terumo holds the Canadian Clinical Trial Authorization
- Prof. Nancy Heddle (McMaster Univ) is the principal investigator of the Canadian study
- CBS produces the Mirasol-treated platelet concentrates for the trial sites. We have now been producing Mirasol platelets for 12 months.



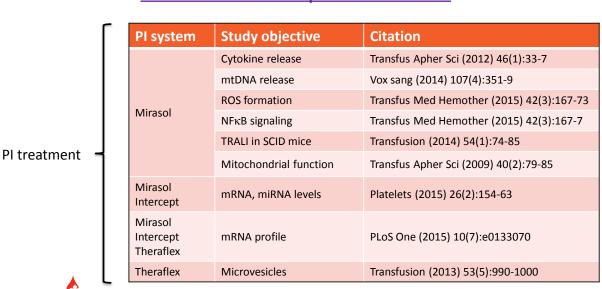
Participating Study Sites: All Canadian Study Sites Now Entering Patients


Juravinski Cancer Centre (Hamilton)	49
Sunnybrook Health Sciences Centre (Toronto)	11
London Health Sciences Centre	12
Ottawa Hospital	26
Kingston General Hospital	2
Total recruitment to 2015-08-27 =	100 patients

 \rightarrow now eagerly awaiting results.....

Connection between yield and pH

The CBS Team at the completion of Mirasol process validation


PI effect on routine platelet quality parameters

Assay	Read-out	Equipment	Intercept	Mirasol	Theraflex
Platelet concentration	Count => yield, MPV	Hemology analyzer	±	±	±
Morphology	Shape	Microscope	\checkmark	\downarrow	n.d.
Metabolism	Glucose, lactate, pH	Blood gas analyzer	±/ 个	$\uparrow\uparrow$	↑ (ox)
Apoptosis	Phosphatidylserine exposure	Flow cytometer	\uparrow	个个 (d7)	\uparrow
Activation	 P-selectin (CD62P) surface expression Glycoprotein II/III activity 	Flow cytometer	个 n.d.	$\uparrow\uparrow$ \uparrow	↑ n.d.
Responsiveness	 agonist-triggered activation agonist-triggered ESC 	Flow cytometer Aggregometer	↓↓ ✓	\downarrow	\downarrow
Clotting	Thrombus formation	microfluidic flow chambers	\downarrow coag time	\checkmark	\checkmark

16

PI effect on 'novel' platelet features

Proteomic approaches towards elucidating molecular mechanisms triggered by PI systems

Proteome Changes in Platelets After Pathogen Inactivation-An Interlaboratory Consensus

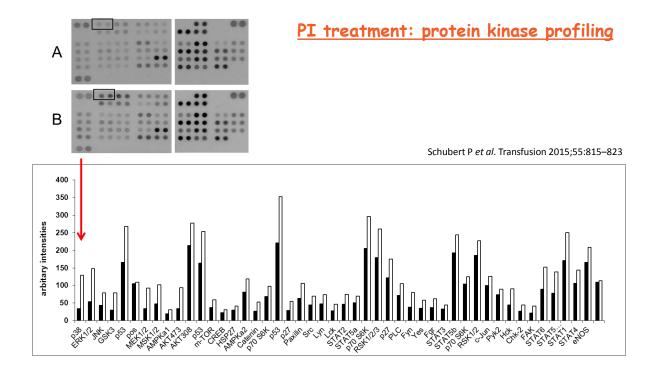
Michel Prudent ^{4,8,1}, Angelo D'Alessandro ^{b,1,2}, Jean-Pierre Cazenave ^c, Dana V. Devine ^{d,1}, Christian Gachet ^{c,1}, Andreas Greinacher ^c, Niels Lion ^a, Peter Schubert ^{d,1}, Leif Steil ^f, Thomas Thiele ^{e,1}, Jean-Daniel Tissot ^a, Uwe Völker ^f, Lello Zolla ^b

Janguine, Unité de Recherche et Développement, tanson-Gencer, Tuscia University, Large dell'Università, Witerlo, Buly surg, Etablissmere Finnaja da Sag-Aboer, Strabueyr, En Aboer, Strabueyr, Barleyr, Barleyr, Barleyr, Barleyr, Barleyr, Barleyr, surgedie, Universitätismedisia Geriphanda, Certifwald, Geri medien, Universitätismedisia Geriphanda, Gerifiwald, Geri Markenhung, Universitätismedizia Gerifiwald, Geri Markenhung, Universitätismedizia Gerifiwald, Gerifiwa

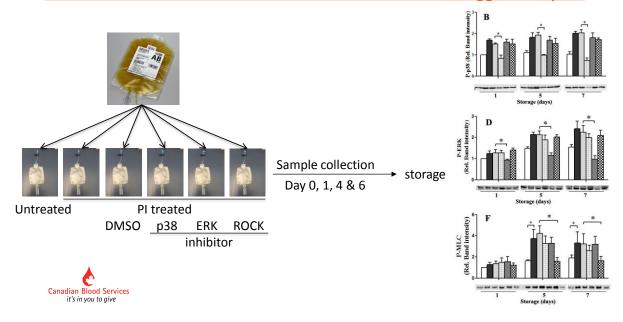
rvice Regime partment of Ecological MR_S949 INSERM, Unive Sector Innovation, Car rsité de Strasbo adian Blood Ser

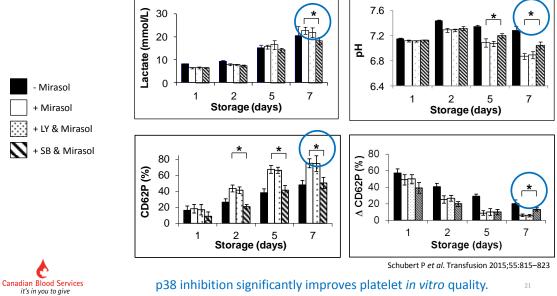
wald, Greit

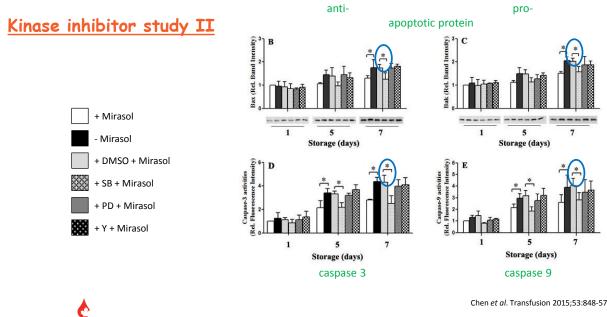
weak impact of PI on the overall proteome profile


Impact found:

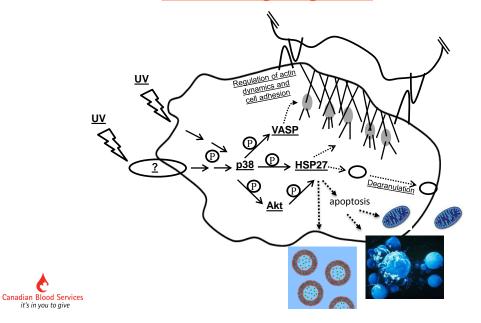
Intercept: intracellular signaling leading to platelet activation


- Mirasol: adhesion and shape change
- Theraflex: aggregation and shape change


Canadian Blood Services it's in you to give



Towards the elucidation of molecular mechanism triggered by PI



Canadian Blood Services it's in you to give p38 inhibition significantly reduced apoptosis development

A current signaling model

Pathogen inactivation of red blood cell concentrates

Optical density issue \rightarrow high dose of UV light

Cerus: S-303 + GSH (quencher) [Henschler et al. (2011) Transfus Med Hemother, 38:33-42]

- 24h recovery ~ untreated study arm
- >35 days of storage: impact on quality

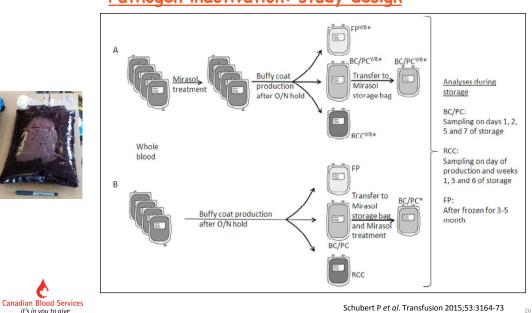
Pathogen inactivation of whole blood

- Benefits: early pathogen inactivation (from donor)
 - protection against TA-GvHD due to WBC inactivation
 - all productions pathogen inactivated

TerumoBCT: riboflavin + UV (Mirasol) [Goodrich et al. (2010) Biologicals, 38:20-30]

- Feasibility studies
- > Recent study in Ghana/Africa: malaria inactivation in WB [Qwusu-Ofori et al. (2015) Shock, 44S1:33-38]

From individual blood component treatment to whole blood treatment


Treatment efficacy

it's in you to give

Pathogens	Publication				
WBC	Goodrich RP et al. (2010) Biologicals, 38:20-30.				
HIV (intracellular)	Keil SD et al. (2012) Vox Sang, 103:144.				
Trypanosoma cruzi	Tonnetti L et al. (2012) Transfusion; 52:409-16.				
Babesia microti	Tonnetti L et al. (2013) Transfusion, 53:860-7.				
Plasmodium falciparum	El Chaar M et al. (2013) Transfusion, 53:3174-83.				

U What effect does treatment have on RBC, platelet and plasma quality?

- □ Is there any difference in product quality between components produced by 'PRP' manufacture [Cancelas et al. (2011) Transfusion, 51(7):1460-8] and buffy coat production used outside of the US (including by Canadian Blood Services)?
- □ How do platelets derived from Mirasol-treated whole blood compare to buffy coat derived platelet concentrates treated with Mirasol after component production? 25

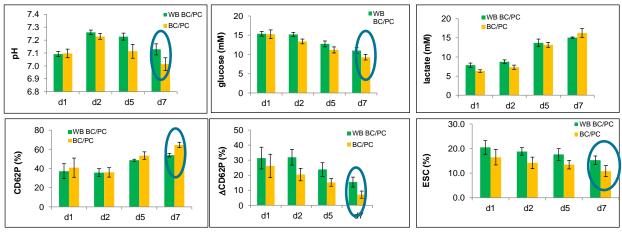
Pathogen inactivation: study design

Assav	Week 0		Week 1		Week 3		Week 6		(6			
	RCC		RCC ^{WB} *	RCC		RCC ^{WB} *	RCC		RCC ^{WB} *	RCC		RCC ^{WB} *
Red cell concentration (× 10 ⁹ L ⁻¹)	6.2 ± 0.3		6.3 ± 0.3	6.2 ± 0.2		6.2 ± 0.2	6.3 ± 0.2		6.1±0.2	6.1 ± 0.2		6.0±0.2
Mean corpuscle volume (fL)	101.5 ± 0.8		100.2 ± 0.8	101.5 ± 1.7		101.5 ± 1.7	102.7 ± 1.5	#	107.5 ± 1.3	107.5 ± 1.4	#	113.1 ± 1.5
рН	7.13 ± 0.02		7.11 ± 0.03	7.00 ± 0.05		6.96 ± 0.06	6.80 ± 0.06		6.80 ± 0.07	6.60 ± 0.02		6.66±0.08
Glucose (mM)	25.4 ± 3.2		25.0 ± 4.1	21.6 ± 2.0		21.8 ± 1.7	18.5 ± 3.02		18.4 ± 1.7	14.3 ± 0.6		15.2 ± 0.9
Lactate (mM)	3.8 ± 0.0		4.2 ± 0.1	8.8±1.6		9.0±1.6	14.4 ± 2.9		13.7 ± 1.8	17.6 ± 3.0		16.0 ± 2.2
Hemolysis (%)	0.04 ± 0.01		0.05 ± 0.01	0.06 ± 0.01	#	0.40 ± 0.01	0.12 ± 0.03	#	0.47 ± 0.06	0.27 ± 0.06	#	1.04 ± 0.09
Potassium (mM)	1.1 ± 0.2	#	1.7 ± 0.5	9.6 ± 0.2	#	27.1 ± 1.3	20.1 ± 0.9	#	35.4 ± 1.3	28.4 ± 1.4	#	36.7 ± 1.3
ATP (μmol/g Hb)	4.25 ± 0.36	#	4.14 ± 0.31	4.51 ± 0.28	#	4.15 ± 0.32	3.81 ± 0.29	#	3.23 ± 0.28	2.67 ± 0.49	#	2.00 ± 0.37
MP count (× μL ⁻¹ SN)	749 ± 220		765 ± 220	838±318		2227 ± 929	1759 ± 512	#	19900 ± 4819	6957 ± 1860	#	89809± 39421

The effect of PRT on RBC in vitro quality

Canadian Blood Services it's in you to give

Reduced red cell quality \rightarrow FDA: 28 day shelf life?

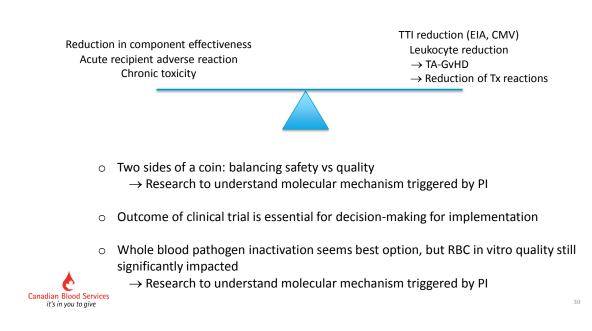

27

The effect of PRT on plasma in vitro quality

Assay		~	
	FP	FP ^{WB*}	
Factor V (IU/mL)	0.81 ± 0.07	#	0.60 ± 0.05
Factor VII (IU/mL)	1.03 ± 0.07	#	0.78 ± 0.05
Factor VIII (IU/mL)	0.83 ± 0.13	#	0.47 ± 0.07
Factor XIII (IU/mL)	1.12 ± 0.14		1.05 ± 0.15
vWF (IU/mL)	0.90 ± 0.18		0.87 ± 0.19
Protein S (IU/mL)	0.84 ± 0.08	#	0.73 ± 0.04
α2-Antiplasmin (IU/mL)	0.88 ± 0.06	#	0.79 ± 0.04
Fibrinogen (mg/mL)	2.62 ± 0.20	#	1.85 ± 0.14
Prothrombin (sec)	13.17 ± 0.26	#	15.19± 0.35
APTT (sec)	34.17 ± 0.73	#	42.97 ± 1.00
adian Blood Services it's in you to give			

- Significant reduction of activity of several coagulant and anticoagulant proteins
- Unclear clinical relevance

14



The effect of PRT on platelet in vitro quality

Platelet units derived from whole blood treatment showed better quality then treated platelet concentrate on day 7 of storage.

Canadian Blood Services it's in you to give

Conclusion and future perspective

Contract Contract CAD donors

😲 Brana and our lab

