

13th Annual Canadian Blood Services International Symposium

Blood-Borne Pathogens: Defend, Detect, and Destroy

PERMISSON TO USE: Please note that, by making their presentations available on-line, primary authors have agreed to share their presentations. However, should you want to use some of the data or slides for your own presentations, we request that you contact the primary author for permission.

Economic and Health Outcome Implications of Introducing New Pathogen Testing and Inactivation Technologies

September 26, 2015

13th Annual Canadian Blood Services International Symposium Blood Borne Pathogens: Defend, Detect, and Destroy

Brian Custer, PhD, MPH Senior Investigator, BSRI Adjunct Professor, Laboratory Medicine, UCSF

Conflict of Interest Disclosures Brian Custer

I have had, in the past 5 years, financial interest, arrangement or affiliation with the following organizations that could be perceived as a direct or indirect conflict of interest in the content of this presentation:

- Grant/Research Support:

- Grifols/Hologic
- Macopharma
- TerumoBCT

Blood Systems Research Institute

Outline

- Review health economics in the blood safety context
- Provide an update on available health economic analysis results for new testing and/or pathogen inactivation technologies
- Explain how the Risk-Based Decision-Making Framework for blood safety can contribute to the process

Economics

Not a "gay science" I should say like some we have heard of; no, a dreary desolate and, indeed, quite abject and distressing one; by way of eminence, the dismal science.

USA Fatalities – Reported to FDA

Figure 1: Transfusion-Related Fatalities by Complication, FY2010 through FY2014 Number of Fatalities 12 8 _ HTR (non-ABO) Microbial HTR (ABO) TRALI TACO Anaphylaxis Other Infection FY10 ■FY11 FY12 FY13 ■FY14 Complication

http://www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailabilit

Blood Systems Research Institute

Microbial Fatalities Reported to FDA

Organism	FY10	FY10	FY11	FY11	FY12	FY12	FY13	FY13	FY14	FY14	Total	Total
	No.	%	No.	%								
Babesia microti	1	50%	1	25%	1	33%	1	20%	0	0%	4	27%
Staphylococcus aureus	0	0%	1	25%	1	33%	0	0%	0	0%	2	13%
Escherichia coli	1	50%	0	0%	0	0%	0	0%	0	0%	1	7%
Staphylococcus epidermidis	0	0%	0	0%	0	0%	1	20%	0	0%	1	7%
Morganella morganii	0	0%	1	25%	0	0%	0	0%	0	0%	1	7%
Streptococcus viridans	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Streptococcus pneumoniae	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Staphylococcus warneri	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Klebsiella pneumoniae	0	0	1	25%	0	0%	0	0%	0	0%	1	7%
Serratia marcescens	0	0	0	0	1	33%	0	0%	1	100%	2	13%
Pseudomonas fluorescens	0	0%	0	0%	0	0%	1	20	0	0%	1	7%
Acinetobacter sp.	0	0%	0	0%	0	0%	1	20	0	0%	1	7%
West Nile virus	0	0%	0	0%	0	0%	1	20	0	0%	1	7%
Total	2	100%	4	100%	3	100%	5	100%	1	100%	15	100%

http://www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailability/ReportaProblem/TransfusionDonationFatalities/UCM459461.pdf

Framing Health Economics

- the Blood Supply is a Public Good
- Welfare economics:
 - Allocation of scarce resources in ways that maximize social welfare
- Systematic identification, enumeration and valuation of costs and benefits (or consequences) of alternate health care interventions or programs: 'value for money'
- Allocative efficiency
 - May not align with ethical considerations

What are we trying to measure?

- Costs
 - Whose costs?
 - How are they measured?
- Consequences
 - What are the range of consequences?
 - Do they match our current understanding of risks and outcomes?
- Cost-effectiveness
 - Ratio of costs to certain aspects of consequences

Economic Anlaysis Lifecycle

- In advance (ex ante)
 - Guides thinking and adoption decisions
 - Based on clinical trial or preliminary data and often requires significant modeling effort
 - Often high has high uncertainty
- Actual use (*post hoc*)
 - Equivalent to Phase IV studies
 - Observed system costs in use compared to costs saved from adverse event prevention
 - Based on actual event probabilities and costs

Economic Evidence Grid

Pathogen or Technology	Budget Impact Analysis	Cost-Effectiveness/Utility
Chikungunya Virus	Not Available	Not Available
Dengue Virus	Not Available	Not Available
Hepatitis E Virus	Not Available	Not Available
Bacterial Culture Platelets	Yes	Yes
Pathogen Inactivation Methods - PIM		
Plasma	Yes	Yes
Platelets	Yes	Yes
Red Cells/Whole Blood	?	Yes
Babesia	Yes	Yes

Increment of PIM Over Bacterial Culture

Janssen et al. Transfusion 2006

Platelets and Plasma Pathogen Inactivation Methods (PIM)

SD Plasma

Multiple pathogen and adverse event models – HIV, HBV, and HCV

CADTH Report

 Baseline result \$933,400/QALY, including HAV and B-19 risks for FFP

Membe et al. CADTH 2011

Intercept for Platelets US and Japan							
Intervention	Pediatric Acute Lymphocytic Leukemia	Adult Hip Arthroplasty	Adult Coronary Artery Bypass Graft	Adult Non-Hodgkin's Lymphoma			
Single	e Donor AP prepare	ed with PIM compa	red to all current so	creens			
Without bacterial culture	\$1.3mil/QALY	\$2.3mil/QALY	\$2.6mil/QALY	\$4.5mil/QALY			
With bacterial culture	\$4.8mil/QALY	\$10.7mil/QALY	\$13.4mil/QALY	\$23.0mil/QALY			
Rando	om Donor PP prepa	ared with PI compa	red to all current so	creens			
Without bacterial culture	\$460K/QALY	\$880K/QALY	\$1.1mil/QALY	\$1.8mil/QALY			
With bacterial culture	\$1.0mil/QALY	\$2.6mil/QALY	\$3.4mil/QALY	\$6.0mil/QALY			
(1) Bell et al. Clinical Therapeutics 2003;25:2464-86							

Intercept for Platelets – Europe

	Intervention	Pediatric Hematology- Oncology	Adult Breast Cancer	Adult Coronary Artery Bypass Graft	Adult Hematology- Oncology	Overall or for Average Patient
	RD poole	d platelets (buf	fy coat) prepare	d using PI comp	ared to all othe	r screens
	RDPP with Bact. Cult (1)	\$339K/LYG		\$616K/LYG	\$889K/LYG	\$725K/LYG
	Bact. Cult. (2)	\$276K/QALY	\$3.0mil/QALY	\$550K/QALY	\$254K - 4.6mil/QALY	
	RDPP prej	pared with bact	erial testing or i	nactivation com	pared to all oth	er screens
	Bact. Cult. (3)					\$91K/QALY
	PIM					\$497K/QALY
	PIM compared to Bact. Cult.					\$3.6mil/QALY
(1 (2 (3	.) Postma et al. ⁻ 2) Moeremans e 3) Janssen et al. ⁻	Transfusion Mec t al. Transfusion Transfusion 200	licine 2005;15:3 Medicine 2006; 6;46:956-65	79-87 :16:17-30	Blood Resea	Systems arch Institute

Baseline results from PIM Analysis for Mirasol

PIM as an addition to current screens

Intervention (Comparator)	Cost per QALY
Whole Blood PI (current screens)	1,276,000
Platelets and Plasma PI (current screens)	1,423,000

Based on a model that included the following infections and non-infectious threats: HIV, HBV, HCV, HTLV, WNV, syphilis, CHIKV, *Trypanosoma cruzi*, Bacteria, GVHD, FNHTR, and TRIM, CMV for immunocompromised patients only

Most important pathogen: Analysis most sensitive to bacteria in platelets

Custer et al, Transfusion 2010;50:2461-2473.

Agapova & Custer ISBT Berlin 2010

Blood Systems

Research Institute

An Emerging Chronic HIV-like Agent

Intervention (Comparator)	Cost per QALY
Whole Blood PI (current screens)	Cost saving \$257 per donation
Platelets and Plasma PI (current screens)	Cost saving \$144 per donation
An Emerging Acute WNV-	like Agent
Intervention (Comparator)	Cost per QALY
Whole Blood PI (current screens)	279,000
Platelets and Plasma PI (current screens)	165,000
Custer AABB Annual Meeting 2011	Blood Systems Research Institute

Poland Cost Effectiveness Results

Strategy	Comparison	ICER (\$/QALY)	Confider	ice Interval
Plasma PIM	Current Screens	1,521,000	1,058,000	2,160,000
Platelets PIM	Current Screens	864,000	580,000	1,238,000
Platelets & Plasma PIM	Current Screens	513,000	360,000	719,000

 Most influential variables (reference case): cost of Plasma PI, quality of life post-transfusion, discount rate for effects, additional component use, variation in post-transfusion mortality and annual mortality thereafter, and bacteria related variables

Agapova et al. Transfusion Medicine and Hemotherapy 2015

Potential Cost Savings of PIM?

- Replacement of bacterial culture
- Avoidance of irradiation
- Avoidance of separate CMV negative inventory
- Extended platelet storage period to 7 days
- Avoidance of some travel deferral for platelet donors

Murphy WG, Transfusion Clinique et Biologique 2011;18:4

Cost Modifications

In the platelet and plasma PI-treated arm of the model the following costs were removed:

- Bacterial culture of platelets
 ~\$25 per platelet product
- Assumed roughly 10% of donations are gamma-irradiated ~\$5/donation*10%

Blood Systems

Research Institute

Results

Platelets and Plasma Pl	ICER/QALY	Marginal Savings to the Healthcare System
All current screens	1,423,000	-
Remove bacterial culture	1,222,000	\$201,000 (14.1%)
+ Remove gamma irradiation	1,215,000	\$7,000 (14.6%)

Blood Systems Research Institute

Redefined Residual Risk of Bacterial Contamination 1 per 3300 (~yield of bacterial culture)

Operational Gains May Offset Investment Costs for PIM

(ELISA+PCR screening of donations) Intervention Endemic Region **Endemic Region** 20-state Universal (4-state screening (7-state screening screening Screening CT, MA, NY, RI) CT ME, NY, RI, NJ, MN, WI) RBC 1,500,000 2,500,000 9,200,000 15,000,000 transfusions **Babesia** infected 10,300 13,200 22,000 26,500 units Averted TTB 99.0 126.8 213.8 255.9 Deaths 0.8 1.7 2.0 1.0 prevented **Total Cost** \$51,300,000 \$82,700,000 \$300,300,000 \$484,000,000

Babesia Testing - Consequences

Goodell et al. Transfusion 2014

Blood Systems Research Institute

Babesia Testing - Consequences

(Ab+PCR screening of donations)

	Intervention	Endemic Region (4-state screening) CT, MA, MN, WI)	Endemic Region (7-state screening CT, MA, MN, WI, NJ, NY, RI)	
	RBC transfusions	-	2,000,000	
	Babesia infected units		-	
	Averted TTB	32.75 per 100,000 transfusions	131.35	
	Deaths prevented	-	10.82	
	Total Cost		\$50,709,761	
Bis	sh et al. Transfusion 2015		Blood Systems Research Institu	te

Babesia Cost-Effectiveness/Utility

(compared to no intervention)

	Intervention		Endemic Region (4-state screening) \$/QALY	Endemic Region (7-state screening) \$/QALY	20-state \$/QALY	Universal \$/QALY	
	Ab screening	(1) (2) (3)	51,000 760,000 2,615,000	3,231,000	6,685,000	8,921,000	
	PCR		(63,600) 5,006,000	6,394,000	14,185,000	19,122,000	
	Ab/PCR		251,000 8,778,000 5,210,000	6,582,000	14,228,000	19,177,000	
() (, (,	1) Bish et al. Tra 2) Simon et al. 3) Goodell et al	ansfu Trans . Tran	sion 2015 fusion 2014 Isfusion 2014		Plood Resea	Systems arch Institut	te

RBDM Framework

- What adherence to the framework could bring to HE and to blood safety decision making
 - Greater consistency in methods and results
 - Use of societal perspective
 - Greater consideration of externalities, including results of other assessments such as contextual issues (social concern & perception, equity, trust, legal & jurisdictional)

Blood Systems Research Institute

RBDM Case Studies

Babesia – Risk Assessment Question

Assuming FDA licensure of a babesia donor screening assay (or assays) and assuming that FDA does not mandate its use, then what are the risks and benefits to blood recipients and donors as well as costs to blood operators and the health care system (including hospitals) of different potential donor screening policies?

Identify Preliminary Risk Management Options

Scenario	Babesia Risk Management Options
Status Quo	No babesia screening
Option A	Universal donor screening
Option B	Regional donor screening: screen all units collected in "endemic" regions
Option C	Regional and selective screening for selected at risk recipients in "endemic" regions (i.e. CMV model)
Option D	Regional donor screening based on hospital customer requests
Option E	Extended regional screening: all units collected in and transfused in endemic regions (including imports)
Alliance of Blood Operators	37

Babesia: Initial Screening Assessment

Level of Risk	Rating
None to Minimal	1
Between Minimal and Medium	2
Medium	3
Between Medium and High	4
High	5

Scenario	Status Quo	Option A	Option B	Option C	Option D	Option E
Patient Risk	5	1	2	4	4	2
Operational Risk	1	3	3	3	4	5
Cost	2	5	3	3	4	4
Social Concern	5	2	4	5	4	5
Risk Rating	13	11	12	15	16	16
ulliance of Blood Operators					38	

Intervention (Comparator)	Cost per QALY	Year of Publicat
HCV Ab (no screen)	Cost saving	1997
HIV Ab (no screen)	3,600	1988
Bacterial culture of platelets	91,000	2006
Mechanical barrier to prevent ABO-mismatch (none)	197,000	1996
Babesia microti Serology+PCR (no screen)	251,000 - 6,582,000	2014-20
WNV NAT (no screen)	520,000 - 897,000 个	2005
Trypansoma cruzi Ab (no screen)	757,000 - 1,360,000 个	2010

Cost Utility League Table of Blood Safety Interve

Mechanical barrier to prevent ABO-mismatch (none)	197,000	1996	
Babesia microti Serology+PCR (no screen)	251,000 - 6,582,000	2014-2015	
WNV NAT (no screen)	520,000 - 897,000 个	2005	
Trypansoma cruzi Ab (no screen)	757,000 - 1,360,000 个	2010	
PIM platelets (current screens)	458,000 - 1,816,000	2003	
PIM platelets and plasma (current screens)	1,423,000	2010	
Minipool HIV/HCV/HBV NAT (serology)	1,500,000 个	2004	
Individual Donation HIV/HCV/HBV NAT (serology)	7,300,000	2004	
HTLV	Not available		
Syphilis	Not available		
TRALI risk reduction	Not available		

Assessment and Evaluation of Results

- Adherence to best practices
- Completeness
- Do underlying assumptions align with available information
- Importance and role of uncertainty
 - Critically important

Health Economic Conclusions

- We are truly in need of a core set of guiding principles for health economic and outcomes assessments of blood safety interventions
- The RBDM Framework and the recommendations therein are one proposed approach
- Blood safety interventions under consideration continue to fall outside of established thresholds for cost-effectiveness in other parts of health and medicine
 - Within the blood safety context new technologies are relatively cost-effective
 - Competing priorities and opportunity cost must be considered
- Implementation of broad spectrum interventions such as PIM are likely to require discontinuation of some current interventions
 - This is a strikingly different approach to blood safety implementation and decision making than in the past

Thank you for your attention

bcuster@bloodsystems.org

